%A LI Guang-yu, CHEN Shuang, ZHANG Hui, ZHANG Tong %T Variation of Spatial Estimation and Distribution of Vegetation Biomass in Yangtze River Delta During 2000-2010 %0 Journal Article %D 2016 %J Journal of Ecology and Rural Environment %R 10.11934/j.issn.1673-4831.2016.05.004 %P 708-715 %V 32 %N 5 %U {http://www.ere.ac.cn/CN/abstract/article_11100.shtml} %8 2016-09-25 %X

Vegetation biomass is an important indicator of the service function of terrestrial ecosystems. It is of great significance to the formulation of rational vegetation protection policies to ascertain spatial distribution rules and temporal variation of vegetation biomass. Though a lot of works have been done on estimating vegetation biomass at regional and global scales, little is available in the literature about spatial estimation of biomass of an ecosystem as a whole and, what is more, spatial resolution of the estimation is too low to reflect changes in land use/cover. Based on multi-sourced data including remote sensing, meteorology, land use/cover, forest inventory, and grain yield, spatial distribution of vegetation biomass at 250 m resolution was studied with the aid of remote-sensing models, spatial downscaling technique, GIS spatial operation and mathematical statistical analysis. Results show that the spatial estimation of vegetation biomass not only inherits the accuracy of statistical data, but also reflects spatial distribution of vegetation biomass. The vegetation biomass in the Yangtze River Delta (YRD) displays a general distribution trend of rising from north to south and being relatively low alongside the Yangtze River and around the Tai Lake Basin. The total vegetation biomass increased significantly during the years from 2000 to 2010. It increased significantly or by 47.74 Tg in parts of Zhejiang, and remained stable with a slight rise (0.94 Tg) in parts of Jiangsu and (0.33 Tg) in Shanghai. Vegetation biomass is closely related to land use/cover (LUCC). The growth of biomass is mainly attributed to the maintenance of forest lands and farmlands in land use. In highly developed plain areas, conversion of forest lands and farmlands has led to significant decline in biomass, however, greening of construction lands helps offset the declining trend of biomass triggered by destruction of vegetation.