不同改良剂材料对双季稻田砷污染阻控的影响

    Effect of Soil Amendments Controlling Arsenic Contamination in Paddy Field Under Double Rice Cropping Systems

    • 摘要: 探讨比表面积大、孔隙多和吸附性强的生物黑炭和生物源石灰(牡蛎壳粉)配施对酸性水稻土砷(As)污染的阻控效果,从而为该区域土壤的As污染治理提供技术参考。通过盆栽试验,比较不同有机肥(猪粪和生物黑炭)与石灰(矿物源石灰和牡蛎壳粉)配施对As污染水稻土w(As)为40 mg·kg-1的阻控效果,分析了土壤有效As含量,水稻秸秆、籽粒和大米中As含量的变化,并探讨了土壤有效As含量与水稻As吸收的量化关系。结果表明:与CK处理相比,猪粪配施矿物源石灰及牡蛎壳粉条件下土壤w(有效As)降低29.1%~57.0%,生物黑炭配施矿物源石灰及生物石灰条件下土壤w(有效As)下降35.1%~65.9%;而土壤w(有效As)的降低进一步阻控了水稻秸秆、籽粒和大米中As累积。其中,生物黑炭配施牡蛎壳粉处理的效果最好,其秸秆、籽粒和大米中w(As)分别降低67.6%~68.5%、66.6%~67.8%和76.0%~76.9%。进一步分析发现,土壤有效As含量与水稻As吸收量可以用指数方程较好地拟合(R2>0.75,P<0.01)。因此,对于酸性水稻土,生物黑炭和牡蛎壳粉可以通过降低土壤有效As来快速阻控水稻秸秆、籽粒和大米对As的吸收,但当土壤w(有效As)小于30 mg·kg-1时,施用改良剂降低土壤As含量的效果不明显。

       

      Abstract: This paper was designed to explore effects of two soil amendments, biochar (with some pig manure) and ground oyster shell (as biological lime), on arsenic (As) pollution in paddy soil in an attempt to provide some technical reference to the region for controlling As pollution in paddy fields under the double rice cropping system. The two soil amendments are both porous and high in specific surface area and adsorption capacity. To that end, a pot experiment was conducted to compare application of biochar plus mineral lime and ground oyster shell with application of pig manure plus mineral lime and ground oyster shell in effect on As pollution. Soil available As in the pot soils and As contents in rice straw, grain and rice in different treatments were analyzed, and the relationship between soil available As with As absorption of rice quantified. Results show that compared with the soil in CK, the soil in the treatment of pig manure plus mineral lime and ground oyster shell were 29.1%-57.0% lower, and the soils in the treatment of biochar plus mineral lime and ground oyster shell were 35.1%-65.9% lower in content of soil available As. The decrease in soil available As in turn lowered the As accumulation in the crop. The straw, grain and rice in the two treatments was 67.6%-68.5%, 66.6%-67.8% and 76.0%-76.9% lower than their respective one in CK in As content. Meanwhile, it was found that the relationship between soil available As and As absorption of rice could well be fitted with an exponential equation, with R2 > 0.75, and P< 0.01. Therefore, in acid paddy fields, it is feasible to reduce soil available As and then As absorption of rice through adding biochar and ground oyster shell, but the effect is not so obvious when soil available As content is lower than 30 mg·kg-1.

       

    /

    返回文章
    返回