近地层臭氧浓度升高对麦田土壤氨氧化与反硝化细菌活性的影响

Effects of Elevated O3 Concentration in Surface Layer on Activity of Soil Ammonia-Oxidizing Bacteria and Denitrifying Bacteria in Wheat Field

  • 摘要: 利用臭氧FACE(free-air O3concentration enrichment,开放式空气臭氧浓度增高)试验平台,研究近地层臭氧浓度(臭氧摩尔分数平均为70 nmol.mol-1)升高对小麦不同生育期植株氮吸收量,土壤w(全氮)、w(矿质氮)、脲酶活性、氨氧化细菌数量、反硝化细菌数量以及小麦成熟期土壤硝化与反硝化作用强度的影响。结果表明,与对照(臭氧摩尔分数平均为45 nmol.mol-1)相比,臭氧浓度升高条件下小麦不同生育期氮吸收量总体趋于升高,土壤w(全氮)、w(铵态氮)和w(硝态氮)总体趋于下降,在小麦成熟期土壤w(全氮)和w(铵态氮)分别比对照下降9%和71%(P<0.05),而w(硝态氮)比对照下降36%;臭氧浓度升高使小麦不同生育期土壤脲酶活性总体趋于增强,在拔节期、抽穗期和灌浆期均显著高于对照(P<0.05);随着小麦的生长,臭氧熏蒸土壤氨氧化细菌和反硝化细菌数量也趋于升高,在小麦成熟期均显著高于对照(P<0.05)。在小麦成熟期,尽管臭氧熏蒸土壤单个氨氧化细菌的硝化活性比对照下降57%,但土壤整体硝化强度却比对照提高123%;臭氧熏蒸土壤反硝化作用强度与对照相比无明显差异,但单个反硝化细菌的反硝化活性却比对照降低96%,达显著水平(P<0.05)。认为臭氧浓度升高促进了小麦对土壤氮素的吸收,导致土壤氮素库存量降低,进而加快了土壤中氮素的转化,表现为脲酶活性升高,氨氧化细菌和反硝化细菌数量增加,但它们的代谢活性反而下降。

     

    Abstract: An O3-FACE(free-air O3 concentration enrichment) system was set up in a wheat field to investigate effects of elevated surface O3 concentration,which was 70 nmol·mol-1 on average,on wheat N-uptake,soil total N and mineral N,urease activity,and populations of ammonia-oxidizing bacteria(AOB) and denitrifying bacteria(DNB) at various wheat growth stages,as well as soil nitrification and denitrification potentials at the wheat harvesting stage.Compared with the ambient O3concentration,which was 45 nmol·mol-1,elevated O3 concentration increased individual wheat N-uptake,while decreased soil total N,NH4+-N and NO-3-N contents.At the wheat harvesting stage,soil total N and NH4+-N contents decreased significantly(P<0.05) by 9% and 71%,respectively,and so did soil NO3--N content by 36%.During the growth periods of wheat,elevated O3 concentration tended to enhance soil urease activity,which was significantly(P<0.05) higher than that in the ambient soil at the jointing,heading and filling stages of wheat,and to increase the population of soil AOB and DNB,as well,which were significantly(P<0.05) higher than those in the ambient soil at the wheat harvesting stage.At that time,although in O3-fumigated soils the specific nitrification potential of AOB tended to decrease,and the soil total nitrification potential to increase,while the specific denitrification potential of DNB decreased significantly(P<0.05) by 96% and the soil total denitrification potential remained unchanged,which suggests that elevated surface O3 concentration promoted wheat N-uptake,inhibited soil N storage,and then accelerated soil N transformation,which was represented by enhanced urease activity,and bigger population sizes of soil AOB and DNB with low metabolic activity.

     

/

返回文章
返回