CMIP6模式对中国碳中和时期陆地生态系统的预估

Projection of China′s Terrestrial Ecosystems during the Carbon Neutrality Period Based on CMIP6

  • 摘要: 陆地生态系统的碳汇功能是缓解全球温室效应的重要手段,也是我国实现碳达峰、碳中和目标的有效技术途径。为了探究碳中和时期中国陆地生态系统特征,本研究基于国际耦合模式比较计划第六阶段(CMIP6)模式和观测数据,根据9个CMIP6地球系统模式对历史参考期(1992—2011年)中国陆地生态系统参数〔叶面积指数(LAI)、总初级生产力(GPP)和净初级生产力(NPP)〕的模拟结果进行模式优选。在此基础上,选用多模式集合平均方法(MME)模拟碳中和时期陆地生态系统LAI、GPP和NPP的总体变化、季节变化和年际变化情况,最后分析了气候因子(降水、温度、湿度、太阳辐射)和人类活动对陆地生态系统参数估算的影响。结果表明:MME方法可以较好地模拟中国年平均LAI、GPP和NPP的时空分布特征,但存在高偏差。与历史参考期相比,碳中和时期中国年平均LAI、GPP和NPP整体均有增加,平均增幅分别为0.30 m2·m-2、196.84 g·m-2和101.91 g·m-2,增幅从东南到西北递减。季节变化上,LAI、GPP和NPP夏季增幅最大(0.37 m2·m-2、78.06 g·m-2、42.12 g·m-2),冬季增幅最小(0.20 m2·m-2、16.69 g·m-2、7.11 g·m-2),增幅高值区主要出现在东南和东北地区。年际变化上,各参数在长江流域、海南和台湾呈逐年增加趋势,而在两广和云南西南部呈显著减少趋势。从影响因素贡献分析来看,碳中和时期降水主导了LAI的变化,人类活动主导了GPP和NPP的变化。未来碳中和时期中国陆地生态系统变绿、固碳能力增强,该研究结果可以为中国未来碳中和目标的实现和气候变化研究提供科学支持。

     

    Abstract: The carbon sequestration capacity of terrestrial ecosystemsplays a crucial role in mitigating global greenhouse gas emissions and serves as a key strategy for China to meet its "peak carbon dioxide emissions" and "carbon neutrality" targets. To investigate the dynamics of China′s terrestrial ecosystems in the context of carbon neutrality, this study utilizes models from the International Coupled Model Intercomparison Project Phase 6 (CMIP6) alongside observational data. The model selection process is based on the performance of nine CMIP6 Earth system models in simulating key terrestrial ecosystem parameters—Leaf Area Index (LAI), Gross Primary Productivity (GPP) and Net Primary Productivity (NPP)—during the historical reference period (1992-2011). The multi-model ensemble (MME) approach is then employed to simulate changes in LAI, GPP, and NPP, including their overall, seasonal and interannual variations, under a future carbon neutrality scenario. Additionally, the study analyzes the influence of climate factors (precipitation, temperature, humidity, and solar radiation) and human activities on these ecosystem parameters. The results show that MME can effectively capture the spatiotemporal distribution of annual average LAI, GPP and NPP across China, though some overestimations remain. Compared to the historical reference period, the carbon neutrality period shows an overall increase in these parameters, with average increases of 0.30 m2·m-2 for LAI, 196.84 g·m-2 for GPP, and 101.91 g·m-2 for NPP. The magnitude of these increases diminishes from southeast to northwest. Seasonally, the largest increases are observed in summer (0.37 m2·m-2 for LAI, 78.06 g·m-2 for GPP, and 42.12 g·m-2 for NPP), while the smallest occur in winter (0.20 m2·m-2 for LAI, 16.69 g·m-2 for GPP, and 7.11 g·m-2 for NPP). The southeastern and northeastern regions show the highest rates of increase. In terms of interannual variations, the Yangtze River Basin, Hainan, and Taiwan exhibit a consistent upward trend in ecosystem parameters, while significant declines are observed in Guangxi, Guangdong, and southwestern Yunnan. Factor Contribution analysis reveals that precipitation primarily drives changes in LAI, whereas human activities dominate trends in GPP and NPP. These findings suggest that, during future carbon neutrality periods, the greening and carbon sequestration capacity of China′s terrestrial ecosystems will likely improve, providing valuable insights for China′s carbon neutrality goals and broader climate change research

     

/

返回文章
返回