人工智能技术驱动的水环境污染物溯源研究进展

Research Progress on Source Tracing of Aquatic Environmental Pollutants Driven by Artificial Intelligence Technology

  • 摘要: 水环境污染溯源是精准治污与生态修复的核心前提, 对流域生态管理及社会、生态协同治理具有至关重要的纽带作用。传统方法受限于检测准确性不足、模型过度简化及数据整合能力薄弱的技术难题, 难以支撑污染物"源-径-汇"全链条动态解析的需求。本文系统梳理了当前水环境污染物溯源方法的现状以及人工智能(AI)技术引入后的技术发展态势, 结合文献计量与案例分析, 揭示了聚焦于污染源智能识别、迁移路径动态建模及污染汇风险预警三大方向的国内外研究热点。AI技术具有突破性的多源异构环境数据处理能力、环境系统中复杂变量间非可加性及非单调性因果关联识别能力以及污染物在环境介质中时空演变的动态模拟预测能力。在源解析维度, 深度学习和迁移学习等展现了复杂环境条件下利用多源数据进行多尺度表征的能力; 面向径建模, 时序模型、物理驱动AI等能够动态解析污染物在多介质界面的迁移路径; 在汇风险评估环节, 多尺度预警框架成为解析污染汇形成机制与生态风险传导路径的重要手段。未来研究需重点攻克跨流域模型泛化能力、污染迁移的物化机理可解释性及边缘计算适应性等难点, 并通过构建"感知、决策、治理"联动的智能云链平台, 建立涵盖模型架构、数据接口与评估协议的技术标准体系, 形成算法伦理审查和跨境治理协同机制。

     

    Abstract: Aquatic pollutants source tracing is fundamental to effective pollution control and ecological remediation, providing critical technical support for basin-scale ecosystem management and socio-ecological governance. Conventional methods, constrained by insufficient detection sensitivity, oversimplified models, and inadequate cross-domain data integration, fail to support dynamic full-chain (source-pathway-sink) analysis of pollutant behavior. This review synthesizes recent advances in aquatic pollutants source tracing methods and emerging trends driven by artificial intelligence (AI) technologies. Bibliometric analysis and case studies identify three converging research frontiers intelligent source recognition, dynamic transport modeling, and sink-related risk early warning. AI technologies, high-dimensional data processing, nonlinear relationship mining, and dynamic simulation, are pollutant tracing frameworks across multiple dimensions. In source apportionment, deep learning architectures integrated with transfer learning frameworks demonstrate exceptional performance in multi-scale source fingerprinting under heterogeneous conditions via multimodal data fusion. For transport modeling, physics-informed neural networks and hybrid time-series prediction models enable precise prediction of cross-media (water-atmosphere-soil) pollutant trajectories. Advanced sink-risk assessment integrates multi-scale early-warning systems with mechanistic frameworks to elucidate sink formation dynamics and ecological risk propagation pathways. Future research should prioritize cross-basin generalizability, explainability of physical and chemical mechanisms, and lightweight deployment. Equally critical are collaborative platforms enabling comprehensive environmental perception and intelligent decision-making, alongside technical system standardization and ethical governance frameworks.

     

/

返回文章
返回