生态与农村环境学报 ›› 2015, Vol. 31 ›› Issue (6): 942-949.doi: 10.11934/j.issn.1673-4831.2015.06.022

• 污染控制与修复 • 上一篇    下一篇

微生物固定化技术对污水中微生物丰度变化的影响

邸攀攀,张力,王岩,张振华,严少华,易能,高岩   

  1. 江苏省农业科学院农业资源与环境研究所
  • 收稿日期:2015-04-07 修回日期:2015-05-25 出版日期:2015-11-25 发布日期:2015-11-26
  • 通讯作者: 高岩 E-mail:jaas.gaoyan@yahoo.com
  • 作者简介:邸攀攀(1989—),女,河北保定人,硕士生,研究方向为富营养化水体生物修复及机理。E-mail: PPD0414@163.com
  • 基金资助:

    国家自然科学基金(41401592);江苏省科技支撑计划(BE2013436);江苏省自然科学基金(BK20140737);江苏省农业科技自主创新资金〔CX(14)5047〕

Effect of Microorganism Immobilization Techniques on Microorganism Abundances in Polluted Ponds.

DI Pan-pan,ZHANG Li,WANG Yan,ZHANG Zhen-hua,YAN Shao-hua,YI Neng,GAO Yan   

  1. Institute of Agricultural Resources and Environment
  • Received:2015-04-07 Revised:2015-05-25 Online:2015-11-25 Published:2015-11-26

摘要:

为探明微生物固定化技术净化污染河塘的效果及净化过程中反硝化脱氮的微生物机制,明确细菌丰度与水质参数之间相互调节的规律,在监测污染河塘水质参数变化的同时,应用实时荧光定量PCR技术研究了接纳生活污水的污染河塘水体总细菌16S rRNA及反硝化功能基因丰度时空变化特征。结果表明:微生物固定化技术能很好地降低污染河塘的CODMn浓度,提高水体透明度,对氮的削减效果也较好。挂膜后污染河塘水体中总细菌和nosZ型反硝化细菌丰度具有相似的变化规律,在挂膜3 d后达最大丰度(平均值分别为2.58×108 和 2.98×104拷贝数·mL-1)。而nirKnirS型反硝化细菌丰度在试验前期几乎无变化,但后期(30 d后)急剧上升。水质参数对细菌丰度影响也比较显著,其中总细菌16S rRNA基因丰度与水体pH值和透明度呈极显著相关(R=0.431 2和-0.659 7,P<0.001);nirS型反硝化细菌丰度与水体温度,NO3--N 、NO2- -N和TP浓度呈极显著相关(R=0.789 9、-0.555 9、-0.756 9和-0.446 3,P<0.001);nosZ型反硝化细菌丰度与透明度,NH4+N和PO43--P浓度呈极显著相关(R=-0.453 4、-0.527 2和-0.491 4,P<0.001)。综上所述,微生物固定化挂膜技术通过其自身微生物的高效生长,并协同环境因子调节河塘水体中微生物尤其是反硝化脱氮微生物丰度变化,从而达到良好的水质净化效果。

关键词: 微生物膜, 污水净化, 反硝化细菌, 16S rRNA基因

Abstract:

Microorganism immobilization technology is used in situ to purify polluted water. To explore effect of the technique purifying polluted ponds and mechanism of the microorganisms involved in N removing denitrification in the purifying process, and to elucidate relationships between microbial abundance and water properties, spatiotemporal variation of the abundances of 16S rRNA and denitrifying genes (nirK, nirS, and nosZ) in water was analyzed using the realtime PCR technique, while changes in water quality (CODMn, NH4+, NO3-, NO2-, TN, TP) of the ponds that accept domestic sewage were monitored from March to May, under subtropical climate. Results show that compared with the influent water, the water in the treated pond was much lower in concentration of CODMn, NH4+ and TN and much higher in transparency. Total bacteria and nosZ-type denitrifying bacteria varied in a similar pattern, peaking on D3 in abundance (3 days after the treatment was done) up to 2.58×108 and 2.98×104 copies·mL-1, respectively, on average, while nirK- and nirS- types of denitrifying bacteria did not varied much in abundance in the initial period of the experiment, and then soared up after D30. The parameters of water quality had much influence on bacterial abundance. The abundance of 16S rRNA genes of total bacteria, which was closely related to pH and transparency (R=0.431 2 and -0.659 7, P<0.001) of the water, while, the abundance of nirS type denitrifying bacteria was to temperature (R=0.789 9, P<0.001), and concentration of NO3--N, NO2--N and TP (R=-0.555 9, -0.756 9 and -0.446 3,P<0.001) and the abundance of nosZ-type denitrifying bacteria was to transparency (R=-0.453 4,P<0.001), and concentration of NH4+-N and PO43--P(R =-0.527 2 and -0.491 4,P<0.001). All the above findings indicate that the microorganism immobilization technique is applicable to in-situ purification of polluted waterbodies through growth of the highly efficient denitrifying bacteria attached on the film and harmonization of environmental factors for growth of the native bacteria in the water, especially denitrifying ones. The interactions of the two effects make it possible to have polluted water purified.

Key words: bio-film, purification of polluted water, denitrifiers, 16S rRNA gene