生态与农村环境学报 ›› 2020, Vol. 36 ›› Issue (7): 930-937.doi: 10.19741/j.issn.1673-4831.2019.0284

• 污染控制与修复 • 上一篇    下一篇

4种非农用农药的降解和吸附特性及多介质环境行为模拟

郭敏1, 周林军1, 吉贵祥1, 吴文铸1, 石利利1,2   

  1. 1. 生态环境部南京环境科学研究所, 江苏 南京 210042;
    2. 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
  • 收稿日期:2019-04-24 发布日期:2020-07-18
  • 通讯作者: 石利利 E-mail:sll@nies.org
  • 作者简介:郭敏(1983-),女,江苏扬州人,副研究员,主要从事化学品行为特性及风险评估研究。E-mail:guomin@nies.org
  • 基金资助:
    国家重点研发计划(2018YFC1801504);江苏省环保科研课题重大技术攻关类(2018001)

Degradation and Adsorption of Four Non-agricultural Pesticides and Simulation of the Environmental Fate.

GUO Min1, ZHOU Lin-jun1, JI Gui-xiang1, WU Wen-zhu1, SHI Li-li1,2   

  1. 1. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China;
    2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
  • Received:2019-04-24 Published:2020-07-18

摘要: 采用室内模拟试验,系统研究生物烯丙菊酯、反式氯氰菊酯、多杀霉素和甲氨基阿维菌素苯甲酸盐4种非农用农药的水解、光解和吸附特性,并采用EQC模型模拟4种非农用农药在多介质环境中的归宿和迁移通量。结果表明,在25℃,pH值分别为4、7和9条件下,生物烯丙菊酯的水解半衰期分别为77.00、57.80和4.41 d,反式氯氰菊酯的水解半衰期分别为>180、40.80和5.64 d,多杀霉素的水解半衰期分别为>180、>180和6.03 d,甲氨基阿维菌素苯甲酸盐的水解半衰期分别为>180、>180和46.20 d;温度越高,pH值越大,4种非农用农药水解速率就越快。氙灯照射下,反式氯氰菊酯、生物烯丙菊酯、甲氨基阿维菌素苯甲酸盐和多杀霉素的光解半衰期分别为0.100、0.738、1.720和6.130 h,其分子结构和理化性质是重要影响因素。4种非农用农药在江西红壤、太湖水稻土和东北黑土中的吸附规律均能较好地用Freundlich方程进行描述,土壤pH值、有机质含量、阳离子交换量和水溶解度是影响其在土壤中迁移的主要因素。根据EQC模型评估结果,稳态平衡非流动条件下土壤相是反式氯氰菊酯、多杀霉素和甲氨基阿维菌素苯甲酸盐最大的贮存库,残留量超过95.0%;生物烯丙菊酯在土壤相、水体相和大气相中的质量分数分别为70.1%、18.2%和10.8%。

关键词: 非农用农药, 水解, 光解, 吸附, EQC模型

Abstract: The hydrolysis, photolysis and adsorption behavior of s-bioallethrin, cypermethrin, spinosad and emamectin benzoate were systematically studied through in-laboratory simulation experiment, and the fate and transport fluxes of the 4 non-agricultural pesticides in environmental matrix were estimated using the Equilibrium Criterion (EQC) model based on the experimental data. The results show that at pH 4, 7 and 9, the hydrolysis half-life (t0.5) of s-bioallethrin was 77.00, 57.80 and 4.41 d; the t0.5 of cypermethrin was >180, 40.80 and 5.64 d; the t0.5 of spinosad was >180, >180 and 6.03 d; and the t0.5 of emamectin benzoate was >180, >180 and 46.20 d, respectively. The hydrolysis rates of the 4 non-agricultural pesticides were gradually enhanced with the increases of temperature and pH. Under the irradiation of xenon lamp, the photolysis half-life of cypermethrin, s-bioallethrin, emamectin benzoate and spinosad was 0.100, 0.738, 1.720 and 6.130 h, respectively. Molecule structure and physico-chemical characteristics were determinative factors affecting their photolysis rates. The adsorptions of 4 non-agricultural pesticides fit with Freundlich equation well in three soils, and pH, organic matter contents, cation exchange capacity and solubility in water significantly affected the adsorption. The predicted results show that soil is the dominant sink of cypermethrin, spinosad and emamectin benzoate, and holds more than 95.0% of these 3 non-agricultural pesticides under steady state and equilibrium conditions. The amounts of s-bioallethrin left in soil, water and air were 70.1%, 18.2% and 10.8%, respectively.

Key words: non-agricultural pesticide, hydrolysis, photolysis, adsorption, EQC model

中图分类号: