生态与农村环境学报 ›› 2014, Vol. 30 ›› Issue (5): 634-639.doi:

• 污染控制与修复 • 上一篇    下一篇

农业小流域源头区池塘底泥磷形态和吸附特征

李红芳,刘锋,杨凤飞,张树楠,肖润林,吴金水   

  1. 中国科学院亚热带农业生态研究所
  • 收稿日期:2014-03-10 修回日期:2014-06-22 出版日期:2014-09-25 发布日期:2014-10-11
  • 通讯作者: 肖润林 中国科学院亚热带农业生态研究所 E-mail:xiaorl@isa.ac.cn
  • 作者简介:李红芳(1989—),女,河南安阳人,硕士生,研究方向为土壤环境与农业生态。E-mail:2008lhfok@163.com
  • 基金资助:

    中国科学院重点部署项目(KZZD-EW-11-03,KZZD-EW-10-05); “十二五”国家科技支撑计划(2012BAD14B17)

Forms and Adsorption Behavior of Phosphorus in Pond Sediments in the Headwater Area of an Agricultural Watershed

LI  Hong-Fang, LIU  Feng, YANG  Feng-Fei, ZHANG  Shu-Nan, XIAO  Run-Lin, WU  Jin-Shui   

  1. Institute of Subtropical Agriculture,Chinese Academy of Sciences
  • Received:2014-03-10 Revised:2014-06-22 Online:2014-09-25 Published:2014-10-11
  • Contact: XIAO Run-Lin Institute of Subtropical Agriculture,Chinese Academy of Sciences E-mail:xiaorl@isa.ac.cn

摘要:

选择开慧河小流域源头区为研究对象,分析3 类池塘(近年来由农田改建的人工塘为第Ⅰ 类,受人为影响大的山边塘为第Ⅱ 类,受人为影响小的山边塘为第Ⅲ类)的水质、底泥理化性质和底泥磷吸附特性。结果表明,3类池塘底泥的全磷、草酸提取态磷、不同形态无机磷(NHCl-P 除外)以及生物可利用性磷(BAP)含量从大到小依次均为Ⅰ、Ⅱ和Ⅲ类,与3 类池塘水质状况相一致。无机态磷中不同形态磷含量从大到小依次为金属氧化物结合态磷(NaOH-P)、钙结合态磷(HCl-P)、可还原态磷(BD-P)和弱吸附态磷(NH Cl-P),其中,NaOH-P 是主要赋存形式(占68.51%)。BD-P 含量和HCl-P 含量分别与活性铁(Feox )含量呈显著正相关(<0.01),NH Cl-P 含量和NaOH-P 含量分别与活性铝(Alox)含量呈显著正相关(<0.05)。采用Langmuir 方程拟合吸附数据得出:Ⅰ类(塘1、6 和12)、Ⅱ类(塘10 和11)和Ⅲ类(塘3)池塘底泥吸附/ 解吸平衡磷浓度(0EP )、磷最大吸附量(max)和磷吸附键能参数()分别为0.02~0. 12 mg·L-1、526.32~826.45 mg·kg-1和0.31~1.11 L·mg-1。其中,塘6 底泥max最小,0EP 最大,潜在磷释放风险大;塘10 和11 具有较高的max及较低的0EP 值;塘3 底泥对磷的吸附能力介于Ⅰ和Ⅱ类塘之间。可见,研究区人类活动输入外源污染物在一定程度上影响了池塘底泥磷含量和吸附特性,在控制农业小流域源头磷污染的同时应考虑磷的流入负荷及水体底泥的磷吸附能力。

关键词: 农业小流域, 池塘, 底泥, 磷形态, 吸附

Abstract:

The Kaihui River watershed was selected as study area, where 12 ponds were sorted into 3 types: Type I,ponds excavated out of farmland in recent years; Type II,, ponds at the foot of hills under intense human disturbance; Type III, ponds at the foot of hills under little human disturbance. Water quality, physic-chemical properties of sediment and phosphorous adsorption behavior in sediment of the ponds were analyzed relative to type of pond. Results show that the three types of ponds followed an order of TypeⅠ﹥Ⅱ﹥Ⅲ in concentration of total P, oxalate extracted P, inorganic P of all other forms (excepted NH4Cl-P), and bio-available P, which corresponded to the order of the ponds in water pollution degree. Among the inorganic forms of phosphorous, an order was found of metal oxide bound P (NaOH-P)﹥calcium bound P (HCl-P)﹥reducible P (BD-P)﹥loosely sorbed P (NH4Cl-P) in terms of concentration. NaOH-P was the dominant form, accounting for 68.51%. Concentrations of BD-P and HCl-P were significantly and positively related to Feox (P<0.01), while the concentrations of NH4Cl-P and NaOH-P were to Alox (P<0.05). Fitting of P adsorption with the Langmuir equation found that the equilibrium P concentration (C0EP), maximum sorption (Smax), and adsorption constant (Kc) in the sediments of the 12 ponds ranged from 0.02 - 0.12 mg·L-1, 526.32 - 826.45 mg·kg-1, and 0.31 - 1.11 L·mg-1, respectively. The sediment in Pond 6 (TypeⅠ) was the highest in C0EP and the lowest in Smax and Kc, so tha, it was the highest in potential P releasing risk. Pond 10 and Pond 11 (TypeⅡ) were quite high in Kc and Smax and relatively low in C0EP. Pond 3 varied between Type I and Type II in P adsorption capacity. It is, therefore, quite obvious that the input of extraneous pollutants through human activities has a certain impact on P content and P adsorption behavior in the sediments of the ponds in the study area, and that in controlling P pollution in headwater regions of agricultural watersheds, it is essential to put P input load and P adsorption capacity of pond sediments under consideration.

Key words: agricultural watershed, pond, sediment, phosphorus form, adsorption

中图分类号: